
Operating System Principles

❖ Operating System Components –

➢ Process management –

• A process can be thought of as a program in execution. Process is the unit of

work in most system.
• A process will need certain resources such as CPU time, memory, files and

I/O devices to accomplish its task. These resources are allocated to the
process either when it is created or while it is executing.

• A process is the unit of work in the most systems. Such a system consists of
a collection of processes. OS processes execute system code and user
processes execute user code.

• All these processes may execute concurrently.
• Most modern OS now support processes that have multiple threads.
• The OS is responsible for the following activities in connection with process

and thread management. The creation and deletion of both user and system
processes, the scheduling of processes and the provision of mechanism for
synchronization, communication and deadlock handling for processes.

• Now a days computers run multitasking OS. The systems run multiple

programs at a time.
• Because of multitasking environment different processes or different jobs

are created for multiple programs.
• When one program or job runs and if it does not require CPU then it may be

assigned to other devices like I/O devices.
• Till that time CPU should not be free so may be another process is assigned

to CPU.
• So, for this kind of processing the process management is required.
• Process management includes creating, running, terminating and assigning

different processes to different devices.
• Even process scheduling is a part of process management where the

sequence and priorities of the processes are defined.
• The process manager is one of the main parts of the four major parts of the

OS. It implements the process abstraction. Process abstraction hides the
complexity of the processes from the user.

➢ Main memory management –

• Main memory is central to the operation of a modern computer system.
• Main memory is a large array of words or bytes ranging in size from

hundreds of thousands to billions.
• Main memory is a repository of quickly accessible data shared by the CPU

and I/O devices.
• The main memory is generally the only large storage device that the CPU is

able to address and access directly.

• For a program to be executed, it must be mapped to absolute addresses and
loaded into memory.

• As the program executes, it accesses program installation and data from
memory by generating their absolute addresses.

• Eventually, the program terminates its memory space is declared available,
and the next program can be loaded and executed.

• To improve both the utilization of the CPU and the speed of the computer’s
response to its users, we must keep several programs in memory.

• Many different memory management schemes are available and the
effectiveness of the different algorithms depends on the particular situation.

• Selection of a memory-management scheme for a specific system depends
on many factors especially in the hardware designs of the system. Each
algorithm requires its own hardware system post.

The OS is responsible for the following activities in connection with memory
management –

• Keeping track of which parts of memory are currently being used and by
whom.

• Deciding which processes are to be loaded into memory when memory space
becomes available.

• Allocating and deallocating memory space as needed.

➢ File management –

• File management is one of the most visible components of an OS. Computers

can store information on several different types of physical media.
• Each media is controlled by a device, such as a disk drive or tape drive, that

also has unique characteristics.
• These properties include access speed, capacity, data transfer rate and

access method.

• A file is a collection of related information defined by its creator.
• Commonly files represent programs (both source and object forms) and data.
• Data files may be numeric, alphabetic.
• A file consists of a sequence of bits, bytes, lines or records whose meaning

are defined by their creators.
• The OS implements the abstract concept of a file by managing man storage

media, such as disk and tapes, and the device that control them.
• Also, files are normally organized into directories to ease their use.
• Finally, when multiple users have access to files, we may want to control by

when and in what ways (e.g., Read, write, append) files may be accessed.

The OS is responsible for the following activities in connection with file
management –

• Creating and deleting files.
• Creating and deleting directories.
• Supporting primitives for manipulating files and directories.
• Mapping files onto secondary storage.
• Backing up files on stable (nonvolatile) storage media.

➢ I/O system management –

• One of the purposes of an OS is to hide the peculiarities of specific hardware

devices from the user.
• e.g., in UNIX, the peculiarities of I/O devices are hidden from the bulk of the

OS itself by the I/O subsystem.

The I/O subsystem consists of –

• A memory management component that includes buffering occulting and
spoofing.

• A general device drive information.
• Drives for specific hardware devices.

• Only the device driver known the peculiarities of the specific device to which

it is assigned.

➢ Secondary storage management –

• The main purpose of a computer system is to execute program.
• These programs, with the data they access, must be in main memory or

primary storage during execution.
• Because main memory is too small to accommodate all data and programs,

and because the data that it holds are lost when power is lost, the computer
system must provide secondary storage to back up main memory.

• Most modern computer systems use disks as the principal on-line storage
medium, for both programs and data.

• Most programs-including compilers, assemblers, sort routines, editors and
formalities are stored on a disk until loaded into memory and then use the
disk as both the source and destination of their processing.

• Hence, the proper management of disk storage is of central importance to a
computer system.

The OS is responsible for following activities in connection with disk management –

• Free space management
• Storage allocation
• Disk scheduling

• Because secondary storage is used frequently, it must be used efficiently.
• The entire speed of operation of a computer may huge on the speeds of the

disk subsystem and of the algorithms that manipulate that subsystem.

❖ Operating System Services –

The OS services are provided for the convenience of the programming to make the
programming task faster.

1. Program execution –

The system must be able to load a program into memory and to run that
program. The program must be able to end its execution, either normally or
abnormally (indicating error).

2. I/O operations –

A running program may require I/O. This I/O may involve a file or an I/O
device. For specific devices, special functions may be desired (such as to
rewind a tape drive or to blank a CRT screen). For efficiency and protection,
users usually cannot control I/O devices directly. Therefore, the OS must
provide a means to do I/O.

3. File system manipulation –

The file system is of particular interest programs need to read and write files.
Programs also need to create and delete files by name.

4. Communications –

In many circumstances, one process needs to exchange information with
other process. Such communication can occur in two major ways. The first
takes between processes that are executing on the same computer, the
second takes place between processes that are executing on different
computer systems that are tied together by a computer network.
Communication may be implemented via shared memory by the technique of
message passing in which packets of information are moved between
processes by the OS.

5. Error detection –

The OS constantly needs to be aware of possible errors. Errors may occur in
the CPU and memory hardware (such as a memory error or a power failure),
in I/O devices and in the user program. For each type of error, the OS should
take the appropriate action to ensure correct and consistent computing.

6. Resource allocation –

When multiple users are logged on the system or multiple jobs are running at
the same time, resources must be allocated to each of them. Many different
types of resources are managed by the OS.

7. Accounting –

We want to keep track of which users use how many and which kinds of
computer resources. This record keeping may be used for accounting (so that
users can be filled) or simply for accumulating usage statistics. Usage
statistics may be a valuable tool for researchers who wish to reconfigure the
system to improve computing services.

8. Protection –

The owners of information stored in a multiuser computer system may want
to control use of that information. When several disjointed processes execute
concurrently, it should not be possible for one process to interface with the
others, or with the OS itself. Protection involves ensuring that all access to
system resources is controlled. Security of the system from outsides is also
important. Such security starts with each user having to authenticate himself
to the system, usually by means of a password, to be allowed access to the
resources.

❖ Operating System Structure -

➢ Simple Structure –

• There are many operating systems that have a rather simple structure.
These started as small systems and rapidly expanded much further
than their scope. A common example of this is MS-DOS. It was designed
simply for a niche amount for people. There was no indication that it
would become so popular.

• An image to illustrate the structure of MS-DOS is as follows −

• It is better that operating systems have a modular structure, unlike MS-
DOS. That would lead to greater control over the computer system and
its various applications. The modular structure would also allow the
programmers to hide information as required and implement internal
routines as they see fit without changing the outer specifications.

➢ Layered Structure –

• One way to achieve modularity in the operating system is the layered

approach. In this, the bottom layer is the hardware and the topmost
layer is the user interface.

• An image demonstrating the layered approach is as follows −

• As seen from the image, each upper layer is built on the bottom layer.
All the layers hide some structures, operations etc from their upper
layers.

• One problem with the layered structure is that each layer needs to be
carefully defined. This is necessary because the upper layers can only
use the functionalities of the layers below them.

➢ Monolithic Structure –

• The monolithic operating system is a very basic operating system in

which file management, memory management, device management,
and process management are directly controlled within the kernel. The
kernel can access all the resources present in the system. In
monolithic systems, each component of the operating system is
contained within the kernel. Operating systems that use monolithic
architecture were first time used in the 1970s.

• The monolithic operating system is also known as the monolithic
kernel. This is an old operating system used to perform small tasks like
batch processing and time-sharing tasks in banks. The monolithic
kernel acts as a virtual machine that controls all hardware parts.

• It is different from a microkernel, which has limited tasks. A
microkernel is divided into two parts, kernel space, and user space.
Both parts communicate with each other through IPC (Inter-process

communication). Microkernel's advantage is that if one server fails,
then the other server takes control of it.

➢ Microkernel Structure –

• The microkernel is one of the kernel's classifications. Being a kernel, it
handles all system resources. On the other hand, the user and kernel
services in a microkernel are implemented in distinct address
spaces. User services are kept in user address space, while kernel
services are kept in kernel address space. It aids to reduce the kernel
and OS's size.

• It provides a minimal amount of process and memory management
services. The interaction between the client application and services
running in user address space is established via message passing that
helps to reduce the speed of microkernel execution. The OS is
unaffected because kernel and user services are isolated, so if any of
the user services fails, the kernel service is unaffected. It is extendable
because new services are added to the user address space, hence
requiring no changes in kernel space. It's also lightweight, secure, and
reliable.

• Microkernels and their user environments are typically used in C++ or C
languages with a little assembly. On the other hand, other
implementation programming languages may be possible with some
high-level code.

❖ System Calls –

Concept –

• System calls provide the if between a process and the OS. These calls
are generally available as assembly language installations and they are
usually listed in the various manuals used by the assembly language
programs.

• A system call is a way for programs to interact with the OS.
• A computer program makes a system call when it makes a request to

the OS kernel.
• System call provides the services of the OS to the user programs via

application program interface (API).
• System calls are the only entry points into the kernel system.
• All programs needing resources must use system calls.

System calls can be grouped roughly into fine major categories –

Process control, file management, device management, information
maintenance and communication.

➢ Process control –

• End, abort
• Load, execute
• Create process, terminate process
• Get process attributes, set process attributes
• Wait for time
• Wait event, single event
• Allocate and free memory

➢ File management –

• Create file, delete file
• Open, close
• Read, write, reposition
• Get file attributes, set file attributes

➢ Device management –

• Request device, release device
• Read, write, reposition
• Get device attributes, set device attributes
• Logically attach or detach devices

➢ Information maintenance –

• Get time or date, set time or date
• Get system data, set system data
• Get process, file or device attributes
• Set process, file or device attributes

➢ Communication –

• Create, delete communication connection
• Send, receive messages
• Transfer status information
• Attach or detach remote devices

➢ System boot –

• The procedure of starting a computer by loading the kernel is known as

booting the system.
• Hence it needs a special program, stored in ROM to do this job known

as the bootstrap loader. E.g., BIOS
• Typically, the BIOS will allow the user to configure a boot order.
• If the boot order is set to: CD Drive, Hard Disk Drive, Network then the

BIOS will try to boot from the CD drive first and if that fails then it will
try to boot from the hard disk drive and if that fails then it will try to
boot from the network, and if that fails then it won’t boot at all.

• Booting is a startup sequence that starts the OS of a computer when it
is turned on.

• A boot sequence is the initial set of operation that the computer
performs when it is switched on.

➢ Boot loader –

• Bootloader is a piece of code that runs before any OS is running.
• Bootloader are used to boot other OS, usually each OS has a set of

bootloaders specific for it.
• Boot loaders usually contain several ways to boot the OS kernel and

also contain commands for debugging and for modifying the kernel
environment.

• Bootloader is program written to load a more complex kernel.

The bootloader ultimately has to:

• Bring the kernel into memory.
• Prove the kernel with the information it needs to work correctly.
• Switch to an environment that the kernel will like.
• Transfer control to the kernel.

